	Name:	
MA 3053 Section 01	Practice Exam 1	November 19, 2019

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $f: X \to X$. Suppose f has the property that $f \circ f = \mathrm{id}|_X$, that is $(f \circ f)(x) = x$ for all $x \in X$. Prove that f is a bijection.

- **2**. Let $f : \mathbb{R} \to \mathbb{R}$ be a decreasing function. Prove that f is an injection.
- **3**. Let $f: X \to Y$ and $P_{\alpha} \subseteq Y$ for every $\alpha \in A$ Show

$$f^{-1}\left(\bigcup_{\alpha\in A}P_{\alpha}\right) = \bigcup_{\alpha\in A}f^{-1}(P_{\alpha})$$

4. Let $f: X \to Y$ be an injection and $P_{\alpha} \subseteq X$ for every $\alpha \in A$. Show that

$$f\left(\bigcap_{\alpha\in A}P_{\alpha}\right) = \bigcap_{\alpha\in A}f(P_{\alpha})$$

5. Let \leq be the relation on \mathbb{N}^+ defined by $x \leq y$ if and only if there is a $z \in \mathbb{N}^+$ such that

$$xz = y$$
.

Prove that \leq is a partial ordering on \mathbb{N}^+ .

6. Let X be a set and $P = \{f : f : X \to X\}$. Define the relation \preceq on P by $f \preceq g$ if and only if $f(x) \leq g(x)$ for all $x \in X$. Prove \preceq is a partial order on P.

7. Let $f : X \to X$ be a function. Define the relation \sim on X by $x \sim y$ if and only if f(x) = f(y). Prove that \sim is an equivalence relation on X. What are the equivalence classes in the quotient space X/\sim , be sure to justify.

8. Let ~ be a relation on $X = \mathbb{Z} \times \mathbb{N}^+$ by $(a, b) \sim (c, d)$ if and only if ad = bc. Show ~ is an equivalence relation on X.

9. What are the multiplication and addition tables for the congruence classes in $\mathbb{Z}/6\mathbb{Z}$.